Search results for "Mie scattering"
showing 10 items of 25 documents
Determination of Aerosol Size Distributions from Spectral Attenuation Measurements
1971
An iteration method for the determination of size distributions of aerosols from spectral attenuation data, similar to the one previously published for clouds, is presented. The basis for this iteration is to consider the extinction efficiency factor of particles as a set of weighting functions covering the entire radius region of a distribution. The weighting functions were calculated exactly from the Mie theory. Aerosol distributions are shown derived from tests with analytical size distributions and also generated from measured aerosol extinction data in seven spectral channels from 0.4-microto 10-micro wavelength in continental aerosols. The influence of relative humidity on the complex…
Calculations of the variability of ice cloud radiative properties at selected solar wavelengths
2010
This study shows that there is surprising little difference in values of reflectance, absorptance, and transmittance for many of the intermediate-size particle spectra. Parrticle size distributions with mode radii ranging from approximately 50 to 300 microAm, irrespective of particle shape and nearly independent of the choice of size distribution representation, give relatively similar flux values. The very small particle sizes, however, have significantly larger values of reflectance and transmittance with corresponding smaller values of absorptance than do the larger particle sizes. The very large particle modes produce very small values of reflectance and transmittance along with very la…
2012
Abstract. One of the major uncertainties in the understanding of Earth's climate system is the interaction between solar radiation and aerosols in the atmosphere. Aerosols exposed to high humidity will change their chemical, physical, and optical properties due to their increased water content. To model hydrated aerosols, atmospheric chemistry and climate models often use the volume weighted mixing rule to predict the complex refractive index (RI) of aerosols when they interact with high relative humidity, and, in general, assume homogeneous mixing. This study explores the validity of these assumptions. A humidified cavity ring down aerosol spectrometer (CRD-AS) and a tandem hygroscopic DMA…
Validation of a spectral light scattering method to differentiate large from small particles in intraocular lenses
2017
A psychophysical approach has been designed to measure straylight from intraocular lenses (IOLs) in vitro. This approach uses a clinical straylight meter (C-Quant) and an observer's eye as optical detector. Based on this, we introduced a method for study of straylight-wavelength dependency for IOLs. This dependency can be used to distinguish between 2 types of scattering particles (small and large) as defined by Mie theory. Validation was performed using a turbidity standard and scattering filters. Several IOLs were analyzed to identify potential scattering sources. Large particles were found to predominate in scattering from the studied lenses. This was confirmed by straylight-angular depe…
Investigation of electron transfer between single plasmon and graphene by dark field spectroscopy
2020
Abstract We investigated the electron transfer time between single plasmonic gold nanoparticles and graphene with our home-build spectral imaging dark-field microscope. The process of electron transfer is supposed to be shuttling of hot electrons on the nanoparticle-graphene interface, resulting in a slight broadening of the scattering spectrum. For detecting the minor spectrum broadening, we firstly characterized our setup systematically and then calibrated its intrinsic error. We found the mechanism of a common but normally neglected setup error, scattering spectrum broadening, which is caused by the bandwidth of the incident light and could exist in most fast dark-field microscopy setups…
Fog attenuation prediction for optical and infrared waves
2004
The principal disadvantage of using free space optics (FSO) telecommunication systems is the disturbing role played by the atmosphere on light propagation and thus on the channel capacity, availability, and link reliability. The wavelength choice is currently a subject of disagreement among designers and users of FSO equipments. Generally this equipment operates in the visible and the near IR at 690, 780, 850, and 1550 nm. Several authors affirm that equipment working at 1550 nm presents less atmospheric attenuation in the presence of fog and thus better link availability. Others consider that for dense fogs (visibility<500 m), all wavelengths are attenuated in the same way (wavelength inde…
The Elliptical Polarization of Light Scattered by a Volume of Atmospheric Air
2010
The scattering of linearly polarized light by aerosol particles produces partly polarized light whose ellipticity is theoretically and experimentally investigated for the specific case of a continental atmospheric aerosol in a volume of air. With the Mie theory and under the assumption of various aerosol size-distribution models, the ellipticity has been computed as a function of the scattering angle for various wavelengths. The computations have been based upon complex indices of refraction: M = 1.5-0.0i, M = 1.5-0.0li, M = 1.5-0.li, M = 1.44-0.0i, M = 1.4-0.0i, M = 1.33-0.0i. The comparison between computed and measured values for the wavelengths of lambda = 0.45 micro to lambda = 0.65 mi…
Optical determination and identification of organic shells around nanoparticles: application to silver nanoparticles
2013
We present a simple method to prove the presence of an organic shell around silver nanoparticles. This method is based on the comparison between optical extinction measurements of isolated nanoparticles and Mie calculations predicting the expected wavelength of the Localized Surface Plasmon Resonance of the nanoparticles with and without the presence of an organic layer. This method was applied to silver nanoparticles which seemed to be well protected from oxidation. Further experimental characterization via Surface Enhanced Raman Spectroscopy (SERS) measurements allowed to identify this protective shell as ethylene glycol. Combining LSPR and SERS measurements could thus give proof of both …
Colloidal plasmonic back reflectors for light trapping in solar cells.
2014
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhib…
Analysis of a strong wildfire event over Valencia (Spain) during Summer 2012 – Part 1: Aerosol microphysics and optical properties
2013
Abstract. The most intense wildfire experienced in Eastern Spain since 2004 happened in Valencia during summer 2012. Although the fire was mostly active during days 29–30 June, a longer temporal period (from 24 June to 4 July) was selected for this analysis. Column-integrated, vertical resolved and surface aerosol observations were performed continuously at the Burjassot station throughout the studied period. The aerosol optical depth at 500 nm shows values larger than 2 for the most intense part of the wildfire and an extremely high maximum of 8 was detected on 29 June. The simultaneous increase of the Ångström exponent was also observed, indicating the important contribution of small part…